Role of lon, an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin.

نویسندگان

  • Michelle D Brazas
  • Elena B M Breidenstein
  • Joerg Overhage
  • Robert E W Hancock
چکیده

With few novel antimicrobials in the pharmaceutical pipeline, resistance to the current selection of antibiotics represents a significant therapeutic challenge. Microbial persistence in subinhibitory antibiotic environments has been proposed to contribute to the development of resistance. Pseudomonas aeruginosa cultures pretreated with subinhibitory concentrations of ciprofloxacin were found to exhibit an adaptive resistance phenotype when cultures were subsequently exposed to suprainhibitory ciprofloxacin concentrations. Microarray experiments revealed candidate genes involved in such adaptive resistance. Screening of 10,000 Tn5-luxCDABE mutants identified several mutants with increased or decreased ciprofloxacin susceptibilities, including mutants in PA1803, a close homolog of the ATP-dependent lon protease, which were found to exhibit > or = 4-fold-increased susceptibilities to ciprofloxacin and other fluoroquinolones, but not to gentamicin or imipenem, as well as a characteristic elongated morphology. Complementation of the lon mutant restored wild-type antibiotic susceptibility and cell morphology. Expression of the lon mutant, as monitored through a luciferase reporter fusion, was found to increase over time in the presence of subinhibitory ciprofloxacin concentrations. The data are consistent with the hypothesis that the induction of Lon by ciprofloxacin is involved in adaptive resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of PA3574 (nalD) gene in development of ciprofloxacin resistance in Pseudomonas aeruginosa isolates

Background & Aims: Pseudomonas aeruginosa is a gram-negative opportunistic pathogen and one of the mortality causes of nosocomial infections. One of the drug resistance mechanisms in P.aeruginosa is mutation in negative regulator genes of mexAB-oprM efflux pump system such as nalD. The aim of this study was to investigate the role of nalD mutations in P. aeruginosa isolates of Guilan province i...

متن کامل

The Lon Protease Is Essential for Full Virulence in Pseudomonas aeruginosa

Pseudomonas aeruginosa PAO1 lon mutants are supersusceptible to ciprofloxacin, and exhibit a defect in cell division and in virulence-related properties, such as swarming, twitching and biofilm formation, despite the fact that the Lon protease is not a traditional regulator. Here we set out to investigate the influence of a lon mutation in a series of infection models. It was demonstrated that ...

متن کامل

Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.

Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many rep...

متن کامل

Armand-Frappier outstanding student award -- role of ATP-dependent proteases in antibiotic resistance and virulence.

ATP-dependent proteases are found in nearly all living organisms and are known to play important roles in protein quality control, including protein degradation and protein refolding. ATP-dependent proteases have been well characterized in Escherichia coli. However, in the opportunistic human pathogen Pseudomonas aeruginosa, the role of these proteases is only starting to be understood. This re...

متن کامل

Involvement of the lon protease in the SOS response triggered by ciprofloxacin in Pseudomonas aeruginosa PAO1.

Pseudomonas aeruginosa PAO1 lon mutants have phenotypes of deficiencies in cell division, swarming, twitching, and biofilm formation as well as a phenotype of ciprofloxacin supersusceptibility. In this study, we demonstrated that a lon mutant was also supersensitive to the DNA-damaging agent UV light. To understand the influence of lon in causing these phenotypes, global gene expression was cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 51 12  شماره 

صفحات  -

تاریخ انتشار 2007